Home
Class 12
MATHS
" functions "f(x)=log(x-1)-log(x-2)" and...

" functions "f(x)=log(x-1)-log(x-2)" and "g(x)=log((x-1)/(x-2))" are identical when "x" lies in the intern "

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x) =log(x-1)-log(x-2) and g(x) =log((x-1)/(x-2)) are identical on

If the function f(x)=log(x-2)-log(x-3) and g(x)=log((x-2)/(x-3)) are identical, then

If the function f(x)=log(x-2)-log(x-3) and g(x)=log((x-2)/(x-3)) are identical, then

If function f and g given by f (x)=log(x-1)-log(x-2)and g(x)=log((x-1)/(x-2))"are equal" then x lies in the interval.

Let f(x) = ln(x-1)(x-3) and g(x) = ln(x-1) + ln(x-3) then,

The function f(x)=log(x+sqrt(x^(2)+1)) is

If f(x)=log(x-5)(2-x), g(x)=log(x-5), h(x)=log(2-x) then

Find for what values of x the following functions would be identical. f(x)=log(x-1)-log(x-2) and g(x)=log((x-1)/(x-2))