Home
Class 12
MATHS
f(x)=(x)/(ln x)" and "g(x)=(ln x)/(x)." ...

f(x)=(x)/(ln x)" and "g(x)=(ln x)/(x)." Then identify the CORRECT statement "

Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f(x)=log(x-2)-log(x-3) and g(x)=log((x-2)/(x-3)) are identical, then

If the function f(x)=log(x-2)-log(x-3) and g(x)=log((x-2)/(x-3)) are identical, then

Let f(x) = ln(x-1)(x-3) and g(x) = ln(x-1) + ln(x-3) then,

If f(x) = x log x and g(x) = 10^(x) , then g(f(2)) =

Statement-1 : For real values of x and y the relation y^(2) = 2x - x^(1) - 1 represents y as a function of x. Statement-2 : If f(x) = log (x-2)(x-3) and g(x) = log(x-2) + log (x-3) then f=g Statement-3 : If f(x+2) = 2x-5 then f(x) = 2x-9.

Statement-1 : For real values of x and y the relation y^(2) = 2x - x^(1) - 1 represents y as a function of x. Statement-2 : If f(x) = log (x-2)(x-3) and g(x) = log(x-2) + log (x-3) then f=g Statement-3 : If f(x+2) = 2x-5 then f(x) = 2x-9.

If f(x) = log x and g(x) = e^x then fog(x) is :

If f(x)=log_(10)x and g(x)=e^(ln x) and h(x)=f [g(x)] , then find the value of h(10).

The function f(x) =log(x-1)-log(x-2) and g(x) =log((x-1)/(x-2)) are identical on

Let g(x)=f(log x)+f(2-log x) and f'(x)<0AA x in(0,3) Then find the interval in which g(x) increases.