Home
Class 11
MATHS
Prove : nPr = n (n-1)P(r-1)...

Prove : ` nPr = n (n-1)P(r-1)`

Text Solution

Verified by Experts

`.^nP_r=.^nC_r*r!`
`=(n!)/((n-r)!*r!)*r!`
`=(n!)/(n-r)!`.
`=n (n-1)!*(r-1)!`
`=n*(n-1)C_(r-1)*(r-1)!`
`n*(n-1)P_(r-1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

11. Prove that nP_(r)=n(n-1)P_(r-1)

Prove that : ^nP_r= n"^(n-1)P_(r-1) , for all natural numbers n and r for which the symbols are defined.

Prove that .^nP_r = ^(n-1)P_r + r^(n-1)P_(r-1)

Prove that : ^nP_r= "^(n-1)P_r+r ^(n-1)P_(r-1) , for all natural numbers n and r for which the symbols are defined.

Prove that ^nP_r= ^(n-1)P_r+r^(n-1)P_(r-1) (notation used are in their usual meaning).

If show that "^(n-1)P_r = (n-r).^(n-1)P_(r-1)

Prove ""^(n)P_(r)=""^(n-1)P_(r) +r. ""^(n-1)P_(r-1)

Prove that P(n,r) = (n- r+1) P(n,r-1)

Show that , .^(n)P_(r)=n.^(n-1)P_(r-1)=(n-r+1).^(n)P_(r-1) .