Home
Class 12
MATHS
(sin^(-1)x)/(sqrt(1-x^(2)))*f...

(sin^(-1)x)/(sqrt(1-x^(2)))*f

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(sin^(-1)x)/(sqrt(1-x^(2))),then(1-x^(2))f'(x)-xf(x)=

If int(2x-sqrt(sin^(-1)x))/(sqrt(1-x^(2)))dx=C-2sqrt(1-x^(2))-(2)/(3)sqrt(f(x)) then f(x) is equal to

If f(x) = (sin^(-1)x)/(sqrt(1-x^(2))) , then the value of (1-x^(2))f'(x) - x f(x) is

If x in[-1,(-1)/(sqrt(2))] , then the inverse of the function f(x)=sin^(-1)(2x sqrt(1-x^(2))) is given by

If x in[-1,(-1)/(sqrt(2))] , then the inverse of the function f(x)=sin^(-1)(2x sqrt(1-x^(2))) is given by

If x in[-1,(-1)/(sqrt(2))] , then the inverse of the function f(x)=sin^(-1)(2x sqrt(1-x^(2))) is given by

Find the domain of F (x) =1/x+2^(sin^(-1)x)+1/(sqrt(x-2)) .

Find the value of x for which f(x) = 2 sin^(-1) sqrt(1 - x) + sin^(-1) (2 sqrt(x - x^(2))) is constant

Find the value of x for which f(x) = 2 sin^(-1) sqrt(1 - x) + sin^(-1) (2 sqrt(x - x^(2))) is constant

Find the value of x for which f(x) = 2 sin^(-1) sqrt(1 - x) + sin^(-1) (2 sqrt(x - x^(2))) is constant