Home
Class 12
MATHS
(1)/(a^(2)-b^(2))+(1)/(b^(2))=(1)/(b^(2)...

(1)/(a^(2)-b^(2))+(1)/(b^(2))=(1)/(b^(2)-c^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

|(1,a^(2),a^(4)),(1,b^(2),b^(4)),(1,c^(2),c^(4))|=(a+b)(b+c)(c+a)|(1,1,1),(a,b,c),(a^(2),b^(2),c^(2))|

det[[ Prove that :,c^(2)a^(2),b^(2),c^(2)(a+1)^(2),(b+1)^(2),(c+1)^(2)(a-1)^(2),(b-1)^(2),[c-1)^(2)]]=4det[[a^(2),b^(2),c^(2)a,b,c1,1,1]]

If a,b,c are sides of a triangle and |(a^(2),b^(2),c^(2)),((a+1)^(2),(b+1)^(2),(c+1)^(2)),((a-1)^(2),(b-1)^(2),(c-1)^(2))|=0 then

((1)/(a)-(1)/(b+c))/((1)/(a)+(1)/(b+c))(1+(b^(2)+c^(2)-a^(2))/(2bc)):(a-b-c)/(abc)

[[a^(2),b^(2),c^(2)(a+1)^(2),(b+1)^(2),(c+1)^(2)(a-1)^(2),(b-1)^(2),(c-1)^(2)]]=k[[a^(2),b^(2),c^(2)a,b,c1,1,1]]

If log(a+b+c) = log a + log b + log c , then prove that log ((2a)/(1-a^(2))+(2b)/(1-b^(2))+(2c)/(1-c^(2))) = log(2a)/(1-a^(2)) + log (2b)/(1-b^(2)) + log(2c)/(1-c^(2)) .

(1)/(c),(1)/(c),-(a+b)/(c^(2))-(b+c)/(c^(2)),(1)/(a),(1)/(a)(-b(b+c))/(a^(2)c),(a+2b+c)/(ac),(-b(a+b))/(ac^(2))]| is

Prove statement "tan"^(-1) (a-b)/(1+ab)+"tan"^(-1)(b-c)/(1+bc) +"tan"^-1(c-a)/(1+ca) ="tan"^(-1) (a^2-b^2)/(1+a^2b^2) +"tan"^(-1)(b^2-c^2)/(1+b^2c^2)+"tan"^(-1) (c^2-a^2)/(1+c^2a^2)