Home
Class 11
MATHS
Consider the equation for 0 le theta le ...

Consider the equation for `0 le theta le 2pi` , `(sin 2theta + sqrt(3) cos2theta)^2 -5 = cos(pi/6-2theta)`. If greatest value of `theta` is`(kpi)/p` the(k, p are coprime), then find the value of (k + p).

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equation for 0 le x le 2pi. 2 sin ^(2) theta = 3 cos theta

Solve the equation for 0 le x le 2pi. sin theta cos theta = (1)/(2)

If 0 le theta le pr, cos 6theta + cos 4theta + cos 2theta + 1 =0 then the ascending order of the values of theta is

sin theta -2 = cos2theta when 0 le theta le 2pi

For 0 le theta le pi/2 the maximum value of sin theta + cos theta is

If 0 le theta lt (pi)/(2) and cos theta+ cos^(2) theta+ cos^(3) theta=1 find the minimum value of tan theta .

If 0 le theta lt pi/2 and costheta + sqrt(3) sin theta =2 , then what is the value of theta ?

Find the value/values of theta(0^@ le theta le 90^@) for which 2 sin theta cos theta = cos theta .

Find the value of theta (0^@ le theta le 90^@) satisfying : 2 sin^2 theta= 3 cos theta .