Home
Class 12
MATHS
Prove that: 3 (sin x-cos x)^4+ 6 (sin x ...

Prove that: `3 (sin x-cos x)^4+ 6 (sin x +cosx)^ 2+4 (sin^6 x+ cos^6 x) -13=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that : 3 (sin x - cos x)^4 + 6 (sin x + cos x)^2 + 4(sin^6 x + cos^6 x) = 13 .

Prove that: 3 (sin x-cos x) ^ (4) +6 (sin x + cos x) ^ (2) +4 (sin ^ (6) x + cos ^ (6) x) -13 = 0

3 (sinx - cosx)^(4) + 6 (sinx + cosx)^(2) + 4(sin^(6)x + cos^(6)x) =

3(sin x- cos x )^(4) + 6(sin x+ cos x )^(2) +4 (sin ^(6) x+ cos ^(6) x)=

3(sin x- cos x )^(4) + 6(sin x+ cos x )^(2) +4 (sin ^(6) x+ cos ^(6) x)=

3(sin x + cos x )^(4) + 6(sin x - cos x )^(2) + 4(sin^(6) x + cos^(6) x )=

The value of 3(sinx - cosx)^4 + 6(sinx + cosx)^2 + 4 (sin^6 x + cos^6 x) is

Show that: 3(sin x-cos x)^(4)+6(sin x+cos x)^(2)+4(sin^(6)x+cos^(6)x)=13

Prove the following: 3(sinx-cosx)^4+6(sinx+cosx)^2+4(sin^6x+cos^6x)=13

3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=