Home
Class 11
MATHS
Prove that: "cot"pi/(24)=sqrt(2)+sqrt(3)...

Prove that: `"cot"pi/(24)=sqrt(2)+sqrt(3)+sqrt(4)+sqrt(6)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : cot frac (pi)(24)= sqrt2+ sqrt3+ sqrt4+ sqrt6 .

Show that cot (7 (1)/(2)) = sqrt(2) + sqrt(3) + sqrt(4) + sqrt(6) .

Prove that cot 7 ""(1^(@))/(2) = sqrt2 + sqrt3 + sqrt4 + sqrt6 = (sqrt3 + sqrt2) (sqrt2 +1 ).

Prove that cot 142.5^circ = sqrt2 + sqrt3 - sqrt4 - sqrt6 .

Prove that ,tan7(1)/(2)@=(sqrt(4-sqrt(6)-sqrt(2)))/(sqrt(3)*sqrt(2)+sqrt(6)-4)

Prove that tan 7 (1^(@))/(2) = sqrt2 - sqrt3 -sqrt4 + sqrt6 = (sqrt3 - sqrt2) (sqrt2 -1).

Prove that : "cos"^(-1)sqrt((2)/(3))-"cos"^(-1)(sqrt(6)+1)/(2sqrt(3))=(pi)/(6)

Evaluate ( sqrt(24) + sqrt(6) )/( sqrt(24) - sqrt(6))

Prove that (a) sqrt(-sqrt3 + sqrt(3 + 8 sqrt(7 + 4 sqrt3))) =2 (b) sqrt(2- sqrt5 + sqrt(-15 + 4 sqrt(41 + 12 sqrt5))) =2