Home
Class 11
MATHS
Prove that: "tan"142""(1^0)/2=2+sqrt(2)-...

Prove that: `"tan"142""(1^0)/2=2+sqrt(2)-sqrt(3)-sqrt(6)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: tan142(1^(@))/(2)=2+sqrt(2)-sqrt(3)-sqrt(6)

Prove that: "tan" 142(1^(@))/(2)=2+sqrt2-sqrt3-sqrt6 .

Show that : tan(142(1^@/2))=2+sqrt2-sqrt3-sqrt6

Prove that : tan 142 1^@/2 =2+sqrt2-sqrt3-sqrt6 .

Prove that: "tan"pi/(16)=sqrt(4+2sqrt(2))-(sqrt(2)+1)

Prove that: "tan"pi/(16)=sqrt(4+2sqrt(2))-(sqrt(2)+1)

Prove that : tan 11^(@) 15' = sqrt(4+2sqrt(2))-sqrt(2)-1

Show that cot(142(1)/(2))^(@)=sqrt(2)+sqrt(3)-2-sqrt(6)

Prove that ,tan7(1)/(2)@=(sqrt(4-sqrt(6)-sqrt(2)))/(sqrt(3)*sqrt(2)+sqrt(6)-4)

Prove that tan [7(1)/(2)]^0 = (sqrt(3) - sqrt(2)) (sqrt(2) - 1) .