Home
Class 11
MATHS
If tan(alpha)= p/q where alpha=6 beta, a...

If `tan(alpha)= p/q` where `alpha=6 beta`, `alpha` being an acute angle, prove that: `1/2 (p cosec 2beta - sec2beta) =sqrt(p^2+q^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan alpha= p/q , where alpha=6 beta, alpha being an acute angle, prove that : 1/2 {p cosec 2 beta- qsec 2 beta} = sqrt(p^2 +q^2) .

If tan(alpha)=(p)/(q) where alpha=6 beta,alpha being an acute angle,prove that: (1)/(2)(p cos ec2 beta-sec2 beta)=sqrt(p^(2)+q^(2))

If t a nalpha=p/q , where alpha=6beta,alpha being acute angle, prove that 1/2{pcos e c2beta-qsec2beta}=sqrt(p^2+q^2)

If tan alpha=(p)/(q), where alpha=6 beta,alpha being acute angle,prove that (1)/(2){p cos ec2 beta-q sec2 beta}=sqrt(p^(2)+q^(2))

Let tanalpha = a/b, alpha being an acute angle. Denote by f(a,b) the value of the expression a " cosec "2beta - b sec 2beta, where alpha = 6 beta . Then f(8,15) is equal to …………….

Let tanalpha = a/b, alpha being an acute angle. Denote by f(a,b) the value of the expression a " cosec "2beta - b sec 2beta, where alpha = 6 beta . Then f(8,15) is equal to …………….

If sin (alpha + beta) = 4/5 , sin (alpha -beta) = (5)/(13), alpha + beta , alpha - beta being acute angles prove that tan 2 alpha = (63)/(16).

If alpha+beta = 90^@ , prove that sec^2 alpha+sec^2 beta = sec^2 alpha sec^2 beta .