Home
Class 11
MATHS
[" The range of parameter'a' for which t...

[" The range of parameter'a' for which these "],[2x+a" lies between the circle "],[x^(2)+y^(2)-2x-2y+1=0" and "],[x^(2)+y^(2)-16x-2y+61=0" without interecting or touching "],[" either circle,is: "],[" a) "(-15+2sqrt(5),-sqrt(5)-1)],[" b) "(15+2sqrt(5),-sqrt(5)+1)],[" (-15"-2sqrt(5),sqrt(5)-1)],[" d) "(-15+2sqrt(5),sqrt(5)-1)],[" d) "(-15+2sqrt(5),sqrt(5)-1)]

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of parameter a' for which the variable line y=2x+a lies between the circles x^(2)+y^(2)-2x-2y+1=0 and x^(2)+y^(2)-16x-2y+61=0 without intersecting or touching either circle is a in(2sqrt(5)-15,0)a in(-oo,2sqrt(5)-15,)a in(0,-sqrt(5)-1)( d) a in(-sqrt(5)-1,oo)

The range of parameter ' a ' for which the variable line y=2x+a lies between the circles x^2+y^2-2x-2y+1=0 and x^2+y^2-16 x-2y+61=0 without intersecting or touching either circle is (a) a in (2sqrt(5)-15 ,0) (b) a in (-oo, 2sqrt(5)-15,) (c) a in (2sqrt(5)-15,-sqrt(5)-1) (d) a in (-sqrt(5)-1,oo)

The range of parameter ' a ' for which the variable line y=2x+a lies between the circles x^2+y^2-2x-2y+1=0 and x^2+y^2-16 x-2y+61=0 without intersecting or touching either circle is (a) a in (2sqrt(5)-15 ,0) (b) a in (-oo, 2sqrt(5)-15,) (c) a in (2sqrt(5)-15,-sqrt(5)-1) (d) a in (-sqrt(5)-1,oo)

The range of parameter ' a ' for which the variable line y=2x+a lies between the circles x^2+y^2-2x-2y+1=0 and x^2+y^2-16 x-2y+61=0 without intersecting or touching either circle is a in (2sqrt(5)-15 ,0) a in (-oo,2sqrt(5)-15 ,) a in (0,-sqrt(5)-10) (d) a in (-sqrt(5)-1,oo)

If x=((sqrt(5)-2))/(sqrt(5)+2) and y=(sqrt(5)+2)/(sqrt(5)-2) find (i)

(12)/(3+sqrt(5)+2sqrt(2)) is equal to 1-sqrt(5)+sqrt(2)+sqrt(10) (b) 1+sqrt(5)+sqrt(2)-sqrt(10) (c) 1+sqrt(5)-sqrt(2)+sqrt(10) (d) 1-sqrt(5)-sqrt(2)+sqrt(10)

(2)/(sqrt(3)+sqrt(5))+(5)/(sqrt(3)-sqrt(5))=x sqrt(3)+y sqrt(5)

If x=(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)) and y=(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)), then (x+y) equals (a) 2(sqrt(5)+sqrt(3))( b) 2sqrt(15)(c)8 (d) 16

If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find : xy

[ If N=(sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(sqrt(5)+1))-sqrt(3-2sqrt(2)) then N equals [ (A) 1, (B) 2sqrt(2)-1 (C) (sqrt(5))/(2), (D) (2)/(sqrt(sqrt(5)+1))]]