Home
Class 11
MATHS
" In a triangle "ABC," show that "s*sec(...

" In a triangle "ABC," show that "s*sec(A)/(2)sec(B)/(2)sec(C)/(2)=2[(abc)/(sin A sin B sin C)]^(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC ,show that s.sec((A)/(2))sec((B)/(2))sec((C)/(2))=2[(abc)/(sin A sin B sin C)]^((1)/(3))

For triangle ABC, show that: sin((A+B)/(2))-cos(C)/(2)=0

For triangle ABC, show that "sin"(A+B)/2="cos"C/2

In any triangle ABC, show that: 2a sin((B)/(2))sin((C)/(2))=(b+c-a)sin((A)/(2))

In a triangle ABC, prove that :a sin((A)/(2)+B)=(b+c)sin((A)/(2))

For triangle ABC prove that sec((A+B)/2)="cosec"C/2

In any triangle ABC, show that : 2a sin (B/2) sin (C/2)=(b+c-a) sin (A/2)

In any triangle ABC show that b^2sin2C+c^2sin 2B=abc/R

If I is the incenter of a triangle ABC, then the ratio IA:IB:IC is equal to cosec (A)/(2):csc(B)/(2):csc(C)/(2)sin(A)/(2):sin(B)/(2):sin(C)/(2)sec(A)/(2):sec(B)/(2):sec(C)/(2) none of these

Delta ABC,abc sin((A)/(2))sin((B)/(2))sin((C)/(2))=