Home
Class 12
MATHS
int(dx)/(9x^(2) +1)...

`int(dx)/(9x^(2) +1)`

A

` (1)/(3) tan^(-1) (2x) + c`

B

`(1)/(3) tan^(-1) x + c `

C

`(1)/(3) tan^(-1) (3x) + c`

D

`(1)/(3) tan^(-1) (6x) + c `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{dx}{9x^2 + 1}\), we can use the formula for the integration of the form \(\int \frac{dx}{a x^2 + b^2}\). ### Step-by-Step Solution: 1. **Identify the constants**: We can rewrite the denominator \(9x^2 + 1\) in the form \(a x^2 + b^2\). Here, we have: - \(a = 9\) (which is \(3^2\)) - \(b = 1\) (which is \(1^2\)) 2. **Use the integration formula**: The formula for the integral is: \[ \int \frac{dx}{a x^2 + b^2} = \frac{1}{b} \cdot \frac{1}{\sqrt{a}} \tan^{-1} \left( \frac{\sqrt{a}}{b} x \right) + C \] In our case, we can substitute \(a = 9\) and \(b = 1\): \[ \int \frac{dx}{9x^2 + 1} = \frac{1}{1} \cdot \frac{1}{3} \tan^{-1} \left( \frac{3}{1} x \right) + C \] 3. **Simplify the expression**: This simplifies to: \[ \frac{1}{3} \tan^{-1}(3x) + C \] 4. **Final answer**: Therefore, the integral \(\int \frac{dx}{9x^2 + 1}\) is: \[ \frac{1}{3} \tan^{-1}(3x) + C \]

To solve the integral \(\int \frac{dx}{9x^2 + 1}\), we can use the formula for the integration of the form \(\int \frac{dx}{a x^2 + b^2}\). ### Step-by-Step Solution: 1. **Identify the constants**: We can rewrite the denominator \(9x^2 + 1\) in the form \(a x^2 + b^2\). Here, we have: - \(a = 9\) (which is \(3^2\)) - \(b = 1\) (which is \(1^2\)) ...
Promotional Banner

Topper's Solved these Questions

  • MARCH 2019

    GURUKUL PUBLICATION - MAHARASHTRA PREVIOUS YEAR PAPERS|Exercise SECTION-B|10 Videos
  • MARCH 2019

    GURUKUL PUBLICATION - MAHARASHTRA PREVIOUS YEAR PAPERS|Exercise SECTION-C|8 Videos
  • MARCH 2018

    GURUKUL PUBLICATION - MAHARASHTRA PREVIOUS YEAR PAPERS|Exercise SECTION - II|20 Videos
  • OCTOBER 2014

    GURUKUL PUBLICATION - MAHARASHTRA PREVIOUS YEAR PAPERS|Exercise SECTION - II|19 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(9x^2-8)=

int(dx)/(1+9x^(2))=?

int(dx)/((4+9x^(2)))

int(dx)/(9x^(2)+6x+10)

int(1)/(9x^(2)+4)dx

int(1)/(9-4x^(2))dx

int(dx)/((1-9x^(2)))=?

int(dx)/((1-6x-9x^(2)))

int(dx)/((9+4x^(2)))dx=?

int (dx)/((9+x^(2)))=?