Home
Class 12
MATHS
Show that sin^(-1)'5/13+cos^(-1)'3/5=tan...

Show that `sin^(-1)'5/13+cos^(-1)'3/5=tan^(-1)'63/16`.

Text Solution

Verified by Experts

Let ` sin^(-1) ((5)/(13)) = x `
` therefore sin x = (5)/(13)` …(i)
But ` sin^(2) x + cos^(2) x = 1`
` therefore (25)/(169) + cos^(2) x = 1`
`rArr cos^(2) x = 1 - (25)/(169) = (144)/(169) `
` rArr therefore cos x = (12)/(13) ` ...(ii)
and let ` cos^(-1)((3)/(5)) = y `
` therefore cos y = (3)/(5) ` ...(iii)
But ` sin^(2) y + cos^(2) y = 1`
` therefore sin^(2) y + cos^(2) y = 1`
` therefore sin^(2) y + (9)/(25) = 1`
` rArr therefore sin^(2) y = 1 - (9)/(25) = (16)/(25)`
`rArr therefore sin y = (4)/(5) ` ...(iv)
Now , ` sin (x + y ) = sin x . cos y + cos x . sin y `
` = (5)/(13) , (3)/(5) + (12)/(13) . (4)/(5)`
` = (3)/(13) + (12xx 4)/(13xx5)`
` = (1)/(13) (3 + (48)/(5))`
` therefore sin (x + y) = (63)/(65)` ...(v)
and ` cos (x +y) = cos x . cos y - sin x . sin y `
` = (12)/(12) , (3)/(5) - (5)/(13) , (4)/(5)`
` = (36)/(65) - (20)/(65) = (36 - 20)/(65) `
` cos (x + y ) = 16/65 `... (vi)
Now , ` tan (x + y) = (sin (x + y))/(cos x + y)`
`=((63)/(65))/((16)/(65)) `
` therefore tan (x + y) = (63)/(16) `
` therefore x + y = tan^(-1) ((63)/(16))`
` therefore ` From equation (i) and (iii) we get ,
`sin^(-1) ((5)/(13)) + cos^(-1) ((3)/(5)) = tan^(-1) ((63)/(16))` .
Promotional Banner

Topper's Solved these Questions

  • MARCH 2019

    GURUKUL PUBLICATION - MAHARASHTRA PREVIOUS YEAR PAPERS|Exercise SECTION-D|13 Videos
  • MARCH 2019

    GURUKUL PUBLICATION - MAHARASHTRA PREVIOUS YEAR PAPERS|Exercise SECTION-B|10 Videos
  • MARCH 2018

    GURUKUL PUBLICATION - MAHARASHTRA PREVIOUS YEAR PAPERS|Exercise SECTION - II|20 Videos
  • OCTOBER 2014

    GURUKUL PUBLICATION - MAHARASHTRA PREVIOUS YEAR PAPERS|Exercise SECTION - II|19 Videos

Similar Questions

Explore conceptually related problems

Show that (sin^(-1)(12))/(13)+(cos^(-1)4)/(5)+(tan^(-1)(63))/(16)=pi

Prove that: sin^(-1)(12)/(13)+cos^(-1)(4)/(5)+tan^(-1)(63)/(16)=pi

sin^(-1)(5/13)+tan^(-1)(12/5)=

sin[cos^(-1)(3/5)+tan^(-1)2]=

tan^(-1)((5)/(13))+cos^(-1)((3)/(5))=

Prove that sin^(-1)(5/13)+sin^(-1)(16/65)=cos^(-1)(4/5)

Prove that: sin^(-1)((5)/(13))+cos^(-1)((4)/(5))=(1)/(2)sin^(-1)((3696)/(4225))

Prove that sin^(-1). 3/5 +cos^(-1) . 12/13 = sin^(-1). 56/65

Prove the following results: tan((sin^(-1)(15))/(13)+(cos^(-1)3)/(5))=(63)/(16) (ii) sin((cos^(-1)3)/(5)+(sin^(-1)5)/(13))=(63)/(65)