Home
Class 12
MATHS
Evaluate int0^(pi/4) log(1+tanx)dx...

Evaluate `int_0^(pi/4) log(1+tanx)dx`

Text Solution

Verified by Experts

` L.H.S. = I = int_(0)^(pi//4) log (1 + tanx)dx`
` = int_(0)^(pi//4) log{1 + tan ((pi)/(4)- x)} dx `
` [ because int_(0)^(a) f (t) dx = int_(0)^(a) f (a - x) dx] `
`= int_(0)^(pi//4) log{1 + ((tan""(pi)/(4)- tan x))/(1+tan""(pi)/(4) tan x)}dx`
` = int_(0)^(pi//4) log [ 1 + (1- tanx)/(1+ tanx)] dx `
` = int_(0)^(pi//4) log [ (1 + tan x + 1 - tan x)/(1 + tan x)] dx `
`= int_(0)^(pi//4)log ((2)/(1 + tanx)) dx `
`=int_(0)^(pi//4) [ log2 - log (1 + tanx)]dx `
`= int_(0)^(pi//4) log2*dx - int_(0)^(pi//4) log (1 + tanx)* dx `
` therefore I = log 2[x]_(0)^(pi//4) - 1`
` therefore 2I = log2 [(pi)/(4)] `
` therefore I = (pi)/(8) log 2 = R.H.S " "` Hence Proved
Promotional Banner

Topper's Solved these Questions

  • MARCH 2019

    GURUKUL PUBLICATION - MAHARASHTRA PREVIOUS YEAR PAPERS|Exercise SECTION-C|8 Videos
  • MARCH 2018

    GURUKUL PUBLICATION - MAHARASHTRA PREVIOUS YEAR PAPERS|Exercise SECTION - II|20 Videos
  • OCTOBER 2014

    GURUKUL PUBLICATION - MAHARASHTRA PREVIOUS YEAR PAPERS|Exercise SECTION - II|19 Videos

Similar Questions

Explore conceptually related problems

int_0^(pi//2)log(tanx)dx

Evaluate int_(0)^(pi//4)In(1+tanx)dx

int_(0)^(pi//4) log (1+tan x) dx =?

Evaluate int_0^(pi/4) secx tanx dx

What is the value of int_(0)^(pi/2) log (tanx) dx ?

Evaluate int_(0)^((pi)/(4))log(1+tan x)dx

Evaluate :int_(0)^((pi)/(4))log(1+tan x)dx

Evaluate: int_0^(pi//4)"log"(1+"t a n x")dx

By using the properties of definite integrals, evaluate the integrals int_(0)^((pi)/(4))log(1+tan x)dx