Home
Class 12
MATHS
If |cos x + sin x| + | cos x - sin x| = ...

If `|cos x + sin x| + | cos x - sin x| = 2 sin x; x in [0,pi]`, then maximum integral value of x is :

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=|[1+sin ^2 x, cos ^2 x , 4 sin 2 x],[ sin ^2 x ,1+cos ^2 x , 4 sin 2 x],[ sin ^2 x , cos ^2 x , 1+4 sin 2 x]| , the maximum value of f(x) is

cos(2pi -x) cos (-x) - sin(2pi +x) sin (-x) = 0

Solve |sin x+cos x|=|sin x|+|cos x|,x in[0,2 pi]

Integrate [(cos x+sin x)/(cos x-sin x)]

Show that sin x (1 + cos x), x in |0, pi| is maximum value at x = (pi)/(3) .

If sin(sin x + cos x) = cos (cos x - sin x) then the largest possible value of sin x is

Integrate {(cos x-sin x)/(cos x+sin x)}

The number of distinct real roots of the equation, |(cos x, sin x , sin x ),(sin x , cos x , sin x),(sinx , sin x , cos x )|=0 in the interval [-pi/4,pi/4] is :