Home
Class 12
MATHS
" If "x=a cos^(3)theta,y=b sin^(3)theta,...

" If "x=a cos^(3)theta,y=b sin^(3)theta," find "(d^(3)y)/(dx^(3))" at "theta=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a cos^(3)theta,y=b sin^(3)theta, then

If x=acos^3theta,y=bsin^3theta, f i n d (d^3y)/(dx^3) at theta=0.

If x = a cos^(3)(Theta), y = a sin^(3)(Theta) find (d^(2)y)/(dx^(2)) .

If x =a cos ^(3) theta, y= a sin ^(3) theta then (d^(2) y)/( dx ^(2)) at theta = pi //4 is

If x = acos^(3)theta , y = a sin^(3)theta ,then find (d^2y)/dx^(2)

If x=acos^3theta,y=bsin^3theta ,fin d (d^3y)/(dx^3) at theta=0.

If x=acos^3theta,y=bsin^3theta,fin d(d^3y)/(dx^3) at theta=0.

If x=acos^3theta,y=bsin^3theta,fin d(d^3y)/(dx^3) at theta=0.

If x= a cos^(3) theta, y= b sin^(3) theta, " then "(dy)/(dx)= (b)/(a) tan theta .

If x=acos^3theta,y=a sin^3theta then find (d^2y)/(dx^(2))