Home
Class 12
MATHS
if int{x^49 tan^-1 (x^50)}/(1+x^100)dx=k...

if `int{x^49 tan^-1 (x^50)}/(1+x^100)dx=k*[tan^-1(x^50)]^2+c` then `k`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(x^(49)tan^(-1)(x^(50)))/((1+x^(100)))dx=k[tan^(-1)(x^(50))]^(2)+C, , then k is equal to

int (x^(49)Tan^(-1) (x^(50)))/((1+x^(100)))dx=k (Tan^(-1)(x^(50))^(2)+c rArr k=

int_( then )^((x^(49)tan^(-1)x^(50))/(1+x^(100)))1+x^(100)dx=k[tan^(-1)(x^(50))]^(2)+C

If int (x^(2)-a^(2))/(x^(2)+a^(2))dx=x+k "tan"^(-1)(x)/(a)+c then k=

int (1-tan^2x)/(1+tan^2x) dx

int (1-tan^2x)/(1+tan^2x) dx

If I = int tan^(-1)((2x)/(1-x^(2)))*dx then I-2x*tan^(-1)x =

If int(1)/((x+1)sqrt(x-1))dx=k.tan^(-1)sqrt((x-1)/(2))+c then k =

If int_(0)^(1)(tan^(-1)x)/(x)dx=k int_(0)^( pi/2)(x)/(sin x)dx then k=

int(1+tan^2x)/(1-tan^2x)dx=