Home
Class 11
MATHS
[" 48.Let "S(k)=(1+2+3+...+k)/(k)" If "S...

[" 48.Let "S_(k)=(1+2+3+...+k)/(k)" If "S_(1)^(2)+S_(2)^(2)+...+S_(10)^(2)=(5)/(12)A],[" then "A" is equal to "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If S_(k)=(1+2+...+k)/(k), find the value of S_(1)^(2)+S_(2)^(2)+...+S_(n)^(2)

If S_k=(1+2+3+...k)/k then find the value of S_1^2+S_2^2+....S_n^2

S_(1)=sum_(k=1)^(n)K,S_(2)=sum_(k=1)^(n)K^(2) and S_(3)=sum_(k=1)^(n)K^(3) then (S_(1)^(4)S_(2)^(2)-S_(2)^(2)S_(3)^(2))/(S_(1)^(2)+S_(3)^(2)) is equal to

Let" "S_(k)=( (1 ,k), (0 ,1) ), k in N .Then (S_(2))^(n)(S_(x))^(-1) (where n in N) is equal to: (S_(k))^(-1) denotes the inverse of matrix S_(k)

Given S_(n)=sum_(k=1)^(n)(k)/((2n-2k+1)(2n-k+1)) and T_(n)=sum_(k=1)^(n)(1)/(k) then (T_(n))/(S_(n)) is equal to

Let S_(n)=sum_(k=1)^(4n)(-1)^((k(k+1))/(2))*k^(2) , then S_(n) can take value

Let S_(n)=sum_(k=1)^(4n)(-1)^((k(k+1))/(2))*k^(2) , then S_(n) can take value

Let S_(k)=1+2+3+....+k and Q_(n)=(S_(2))/(S_(2)-1)*(S_(3))/(S_(3)-1)...(S_(n))/(S_(n)-1) where k,nvarepsilon N*lim_(x rarr oo)Q_(n)=