Home
Class 14
MATHS
(x^(2)-7|x|+10)/(x^(2)-6x+9)<0...

(x^(2)-7|x|+10)/(x^(2)-6x+9)<0

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the inequation (x^(2)-7|x|+10)/(x^(2)+6 x+9) lt 0 is

lim_(xto3)(x^(2)-9)/(x^(2)(x^(2)-6x+9))

4.(5m+5n)/(7m+7n)7*(x^(2)-9)/(x^(2)+6x+9)

Compute lim_(x rarr3)(x^(3)-6x^(2)+9x)/(x^(2)-9)

"If" log_((3x-1))(x-2)= log_((9x^(2)-6x+1))(2x^(2)-10x-2) , then x equals-

6x^(2)+7x-10=0

underset(x to oo)lim (x^2+7x+10)/(x^2-6x-16) is equal to

lim_(x rarr3)((x^(2)-9-sqrt(x^(2)-6x+9)))/(|x-1|-2)

lim_(x rarr3)(x^(2)-9)/(x^(3)-6x^(2)+9x+1)