Home
Class 12
MATHS
I=int(-1)^(2)|x^(3)-x|dx...

I=int_(-1)^(2)|x^(3)-x|dx

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(1) = int_(0)^(1) 2^(x^(2))dx, I_(2) = int_(0)^(1) 2^(x^(3))dx , I_(3) = int_(1)^(2) 2^(x^(2))dx, I_(4)=int_(1)^(2) 2^(x^(3))dx then

If I_(1)=int_(0)^(1) 2^(x^(2)) dx, I_(2)=int_(0)^(1) 2^(x^(3)) dx, I_(3)=int_(1)^(2) 2^(x^(2))dx and I_(4)=int_(1)^(2) 2^(x^(3))dx then

If I_(1)=int_(0)^(1) 2^(x^(2)) dx, I_(2)=int_(0)^(1) 2^(x^(3)) dx, I_(3)=int_(1)^(2) 2^(x^(2))dx and I_(4)=int_(1)^(2) 2^(x^(2))dx then

l_(1)=int_(0)^(1)3^(x^(2))dx,l_(2)=int_(0)^(1)3^(x^(3))dx,l_(3)=int_(1)^(2)3^(x^(2))dx,l_(4)=int_(1)^(2)3^(x^(3))dx then (i)I_(1)>I_(2)(ii)I_(2)>I_(1)(iii)I_(3)>I_(4)(iv)I_(4)>I_(3)

IfI_(1)=int_(0)^(1)2^(x^(2)),I_(2)=int_(0)^(1)2^(x^(3))dx,I_(3)=int_(1)^(2)2^(x^(2))dx,I_(4)=int_(1)^(2)2^(x^(3))dx then which of the following is/are true? I_(1)>I_(2)(b)I_(2)>I_(1)I_(3)>I_(4)(d)I_(3)

If I_(1)=int_(e)^(e^(2))(dx)/(ln x) and I_(2)=int_(1)^(2)(e^(x))/(x)dx

"I=int_(0)^(3)(x^(3)-2x+3)*dx

I=int_(0)^(2)(3x^(2)-3x+1)cos(x^(3)-3x^(2)+4x-2)dx

If I_(1) = int_0^(1) 2^(x^(2)) dx, I_(2) = int_0^(1) 2^(x^(3)) dx, I_(3) = int_1^(2) 2^(x^(2)) dx, I_(4) = int_1^(2) 2^(x^(3)) dx then,

The number of positive continuous f(x) defined in [0,1] for with I_(1)=int_(0)^(1)f(x)dx=1,I_(2)=int_(0)^(1)xf(x)dx=a , I_(3)=int_(0)^(1)x^(2)f(x)dx=a^(2) is /are