Home
Class 12
MATHS
If [x] represents greatest integer leq x...

If [x] represents greatest integer `leq x` , then `int_0^(sqrt(2))[x^2]dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If [x] represents greatest integer le x then int_(0)^(sqrt(2))[x^(2)]dx=

If [x] represents greatest integer le x then int_(1)^(3//2) [2x +1]dx=

If [.] represent greatest integer less than or equal to x, then int_0^2 (x+[x-2[x]])^([2x]) dx=

If int_(-a)^(a) ( | x | + |x-2 |) dx =22 , ( a gt 2) and [x] denotes the greatest integer le x , then int_(-a)^(a) (x +[x])dx is equal to ______

If [x] is the greatest integer le x , then pi^(2) int_(0)^(2)(sin""(pi x)/(2)) (x-[x])^([x])dx is equal to :

If [.] represents the greatest integer function, then the value of |int_(0)^(sqrt((pi)/(2)))[[x^(2)]-cosx]dx| is "____________"

int_(-2)^2min(x-[x],-x-[-x])dx equals, where [ x ] represents greatest integer less than or equal to x.

If I=int_-1^1 ([x^2]+log((2+x)/(2-x)))dx where denotes the greatest integer leq x , then I equals

if [x] denotes the greatest integer less than or equal to x then integral int_0^2x^2[x] dx equals

int_(-2)^2min(x-[x],-x-[-x])dx equals, where [ x ] represents greatest integer less than or equal to x. A. 2 B. 1 C. 4 D. 0