Home
Class 7
MATHS
(x/y)^(-1)=(x)^(-1)/(y)^(-1)...

`(x/y)^(-1)=(x)^(-1)/(y)^(-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Convert the following equations into simultaneous equations and solve: sqrt((x)/(y))=4,(1)/(x)+(1)/(y)=(1)/(xy)

Prove that ((x^(-1)+y^(-1)))/(x^(-1))+((x^(-1)+y^(-1)))/(y^(-1))=(x+y)^2/(xy)

Prove that ((x^(-1)+y^(-1))/x^(-1))^(-1)+((x^(-1)-y^(-1))/x^(-1))^(-1)=(2y^(2))/(y^(2)-x^(2))

For a non-zero positive numbers x,y and z ,the minimum value of (x+y+z)((1)/(x)+(1)/(y)+(1)/(z)) is

For all positive numbers x,y,z the product ((1)/(x+y+z))((1)/(x)+(1)/(y)+(1)/(z))((1)/(xy+yz+zx))((1)/(xy)+(1)/(yz)+(1)/(zx)) equals

For all positive numbers x,y,z the product ((1)/(x+y+z))((1)/(x)+(1)/(y)+(1)/(z))((1)/(xy+yz+zx))((1)/(xy)+(1)/(yz)+(1)/(zx)) equals

For all positive numbers x,y,z the product ((1)/(x+y+z))((1)/(x)+(1)/(y)+(1)/(z))((1)/(xy+yz+zx))((1)/(xy)+(1)/(yz)+(1)/(zx)) equals

((1)/(x) + (1)/(y)) ((1)/(x) - (1)/(y)) = ?