Home
Class 11
MATHS
Let f be a non-negative continuous funct...

Let f be a non-negative continuous function such that the area bounded by the curve `y = f(x)`, x-axis and the coordinates x = 3:`sqrt2` and x = `beta > pi/4` is `(beta sin beta + pi/4 cos beta + sqrt2 beta). then f(pi/2)` is:

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a non-negative continuous function such that the area bounded by the curve y=f(x), x-axis and the ordinates x=pi/4 and x=beta gt pi/4 is : (beta sin beta + pi/4 cos beta +sqrt2beta) . Then f(pi/2) is :

Let f(x) be a non-negative continuous function such that the area bounded by the curve y=f(x) , x-axis and the ordinates x=(pi)/(4) and x = bet gt (pi)/(4) is beta sin beta +(pi)/(4) cos beta +sqrt(2) beta then f((pi)/(2))=

Let f(x) be non- negative continuous function such that the area bounded by the curve y=f(x) , x- axis and the ordinates x= (pi)/(4) and x = beta ( beta gt (pi)/(4)) is beta sin beta + (pi)/(4) cos beta + sqrt(2) beta . Then the value of f((pi)/(2)) is-

Let f(x) be a non-negative continuous function such that the area bounded by the curve y=f(x), the x-axis, and the ordinates x=(pi)/(4) and x=betagt(pi)/(4)" is "beta sin beta +(pi)/(4)cos beta +sqrt(2)beta. Then f'((pi)/(2)) is

Let f(x) be a non-negative continuous function such that the area bounded by the curve y=f(x), the x-axis, and the ordinates x=(pi)/(4) and x=betagt(pi)/(4)" is "beta sin beta +(pi)/(4)cos beta +sqrt(2)beta. Then f'((pi)/(2)) is

Let f(x) be a non-negative continuous function such that the area bounded by the curve y=f(x), the x-axis, and the ordinates x=(pi)/(4) and x=betagt(pi)/(4)" is "beta sin beta +(pi)/(4)cos beta +sqrt(2)beta. Then f'((pi)/(2)) is

Let f(x) be a non-negative continuous function such that the area bounded by the curve y=f(x), the x-axis, and the ordinates x=(pi)/(4) and x=betagt(pi)/(4)" is "beta sin beta +(pi)/(4)cos beta +sqrt(2)beta. Then f'((pi)/(2)) is

Let f(x) be a non-negative continuous function such that the area bounded by the curve y=f(x), the x -axis,and the ordinates x=(pi)/(4) and x=beta>(pi)/(4) is beta sin beta+(pi)/(4)cos beta+sqrt(2)beta Then f'((pi)/(2)) is ((pi)/(2)-sqrt(2)-1)( b) ((pi)/(4)+sqrt(2)-1)-(pi)/(2)( d) (1-(pi)/(4)-sqrt(2))