Home
Class 12
MATHS
[" If "x,y,z" are all different from zer...

[" If "x,y,z" are all different from zero and "|[1+x,1],[1,1+y]|=0" then value of "],[x^(-1)+y^(-1)+z^(-1)" is "],[[" (a) "xyz," (b) "x^(-1)y^(-1)z^(-1)," (c) "-x-y-z," (d) "-1]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x , y , z are different from zero and |[1+x,1 ,1], [1, 1+y,1], [1, 1, 1+z]|=0 then the value of x^(-1)+y^(-1)+z^(-1) is (a) x y z (b) x^(-1)y^(-1)z^(-1) (c) -x-y-z (d) -1

If x , y , z are different from zero and |[1+x,1, 1],[1 , 1+y ,1],[ 1 ,1, 1+z]|=0 then the value of x^(-1)+y^(-1)+z^(-1) is (a) x y z (b) x^(-1)y^(-1)z^(-1) (c) -x-y-z (d) -1

If x , y , z are different from zero and |[1+x,1, 1],[1 , 1+y ,1],[ 1 ,1, 1+z]|=0 then the value of x^(-1)+y^(-1)+z^(-1) is (a) x y z (b) x^(-1)y^(-1)z^(-1) (c) -x-y-z (d) -1

If x,y,z are all different from zero and |{:(1+x,1,1),(1,1+y,1),(1,1,1+z):}|=0 then value of x^(-1)+y^(-1)+z^(-1) is ".........."

If x, y, z are all different and not equal to zero and |{:(1+x,,1,,1),(1,,1+y,,1),(1,,1,,1+z):}| = 0 then the value of x^(-1) + y^(-1) + z^(-1) is equal to

If x, y, z are all distinct and |(x,x^(2),1+x^(3)),(y,y^(2),1+y^(3)),(z,z^(2),1+z^(3))|=0 then value of x y z is :

If x ,\ y ,\ z are non-zero real numbers, then the inverse of the matrix A=[x0 0 0y0 0 0z] , is [x^(-1)0 0 0y^(-1)0 0 0z^(-1)] (b) x y z[x^(-1)0 0 0y^(-1)0 0 0z^(-1)] (c) 1/(x y z)[x0 0 0y0 0 0z] (d) 1/(x y z)[1 0 0 0 1 0 0 0 1]