Home
Class 11
MATHS
For all n geq1, prove that 1^2+2^2+3^2+4...

For all `n geq1`, prove that `1^2+2^2+3^2+4^2+dotdotdot+n^2=``(n(n+1)(2n+1))/6`

Promotional Banner

Similar Questions

Explore conceptually related problems

For all n gt= 1 , prove that, 1^2 + 2^2 + 3^2 + 4^2 + …….+n^2 = (n(n+1)(2n+1))/(6)

For all n ge 1 prove that 1^(2)+2^(2)+ 3^(2)+4^(2)+….+n^(2)= (n(n+1)(2n+1))/(6)

For all n ge 1 prove that 1^(2)+2^(2)+ 3^(2)+4^(2)+….+n^(2)= (n(n+1)(2n+1))/(6)

For all n ge 1 prove that 1^(2)+2^(2)+ 3^(2)+4^(2)+….+n^(2)= (n(n+1)(2n+1))/(6)

Prove that 1^2+2^2+dotdotdot+n^2>(n^3)/3, n in N

For all ngeq1 , prove that 1/(1. 2)+1/(2. 3)+1/(3. 4)+dotdotdot+1/(n(n+1))=n/(n+1)

For all ,prove that ,prove that 1^(2)+2^(2)+3^(2)+4^(2)+...+n^(2)=(n(n+1)(2n+1))/(6)

Prove that 1^(2)+2^(2)+3^(2)+.....+n^(2)=(n(n+1)(2n+1))/6

Prove that : 1^(2)+2^(2)+3^(2)+...+n^(2)=(n(n+1)(2n+1))/(6)

Prove the following by using the principle of mathematical induction for all n in N : 1^2+3^2+5^2+dotdotdot+(2n-1)^2=(n(2n-1)(2n+1))/3