Home
Class 12
MATHS
[" 26.Prove that "],[ tan^(-1)((1)/(x+y)...

[" 26.Prove that "],[ tan^(-1)((1)/(x+y))+tan^(-1)((y)/(x^(2)+xy+1))=cot^(-1)x]

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(- 1) (1/(x+y)) +tan^(- 1) (y/(x^2+x y+1)) =cot^(- 1)x

Prove that : tan^(-1) x+cot^(-1) y = tan^(-1) ((xy+1)/(y-x))

Prove that : tan^(-1) x+cot^(-1) y = tan^(-1) ((xy+1)/(y-x))

Prove that tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)),xygt-1

Prove the "tan"^(-1) 1/(x+y) + "tan"^(-1) y/(x^2=xy+1) ="tan"^(-1)1/x

Prove that : tan^(-1)((x-y)/(1+xy)) + tan^(-1)((y-z)/(1+yz)) + tan^(-1)( (z-x)/(1+zx)) = tan^(-1)((x^2-y^2)/(1+x^2y^2))+tan^(-1)((y^2-z^2)/(1+y^2z^2))+tan^(-1)((z^2-x^2)/(1+z^2x^2))

Prove that : tan^(-1)((x-y)/(1+xy)) + tan^(-1)((y-z)/(1+yz)) + tan^(-1)( (z-x)/(1+zx)) = tan^(-1)((x^2-y^2)/(1+x^2y^2))+tan^(-1)((y^2-z^2)/(1+y^2z^2))+tan^(-1)((z^2-x^2)/(1+z^2x^2))

Prove that tan^(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1-xy)) when xylt1

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .