Home
Class 12
MATHS
[" sigmaand to respectively.The potentia...

[" sigmaand to respectively.The potential of faell "B" is - "],[[" (1) "(sigma)/(e_(0))[(a^(2)-b^(2))/(b)+c]," (2) "(sigma)/(b_(0))[(b^(2)-c^(2))/(b)+a]," (3) "(sigma)/(varepsilon_(0))[(b^(2)-c^(2))/(c)+a]," (4) "(sigma)/(varepsilon_(1))[(a^(2)-b^(2))/(a)+c]]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Three concentric spherical metallic shells A, B, and C of radii a,b, and c(a lt b lt c) have surface charge densities sigma, -sigma and sigma , respectively. If V_(A), V_(B) and V_(C) are potential of shells A, B and C, respectively, match the columns {:("Column A",,,"Column B"),(a. V_(A),,i.,sigma/epsilon_(0)[(a^(2)-b^(2)+c^(2))/c]),(b. V_(B),,ii.,sigma^(2)/epsilon_(0)[a^(2)/b-b+c]),(c. V_(C),,iii.,sigma/epsilon_(0)[a-b+c]):}

Three concentric spherical metallic shells A, B, and C of radii a,b, and c(a lt b lt c) have surface charge densities sigma, -sigma and sigma , respectively. If V_(A), V_(B) and V_(C) are potential of shells A, B and C, respectively, match the columns {:("Column A",,,"Column B"),(a. V_(A),,i.,sigma/epsilon_(0)[(a^(2)-b^(2)+c^(2))/c]),(b. V_(B),,ii.,sigma^(2)/epsilon_(0)[a^(2)/b-b+c]),(c. V_(C),,iii.,sigma/epsilon_(0)[a-b+c]):}

Three concentric spherical metallic shells A,B and C of radii a,b and c ( a lt b lt c) have surface charge densities sigma, - sigma and sigma respectively. If the potential of shell B is V_(B) = (sigma)/(in_(0)) ((a^(n))/(b) - b+c) and the potential of shell C is V_(C) = (sigma)/(in_(0)) ((a^(n))/(c) - (b^(n))/(c)+c) then n is .

There are three concentric thin spheres of radius a,b,c (agtbgtc) . The total surface charge densities on their surfaces are sigma,-sigma,sigma respectively. The magnitude of the electric field at r (distance from centre) such that agtrgtb is: A. 0 B. (sigma)/(epsilon_(0) r^(2))(b^(2)-c^(2)) C. (sigma)/(epsilon_(0)r)(a^(2)+b^(2)) D. none of these

Three concentric spherical metallic shells A,B and C of radii a,b and c ( a lt b lt c) have surface charge densities sigma, - sigma and sigma respectively. If the potenital of sheel B is V_(B) = (sigma)/(in_(0)) ((a^(n))/(b) - b+c) and the potential of shell C is V_(C) = (sigma)/(in_(0)) ((a^(n))/(c) - (b^(n))/(c)+c) then n is .

If (a)/(b+c)+(b)/(c+a)+(c)/(a+b)=0 then prove that (a^(2))/(b+c)+(b^(2))/(c+a)+(c^(2))/(a+b)=0

If a+b+c=0 , then (a^2)/(b c)+(b^2)/(c a)+(c^2)/(a b)=?\ (a)0 (b) 1 (c) -1 (d) 3

If a+b+c=0 , find the value of (a^2)/((a^2-b c))+(b^2)/((b^2-c a))+(c^2)/((c^2-a b)) (a) 0 (b) 1 (c) 2 (d) 4

If [[a,a^(2),a^(3)-1b,b^(2),b^(3)-1c,c^(2),c^(3)-1]]=0

If the standard deviation of a variable xi s sigma, then standard deviation of variable (aX+b)/(c) is a sigma( b) (a)/(c)sigma(c)|(a)/(c)| sigma(d)(a sigma+b)/(c)