Home
Class 14
MATHS
(93." aff "sqrt(18225)=sqrt(135)vec E*ve...

(93." aff "sqrt(18225)=sqrt(135)vec E*vec T*vec T(17)/(x)d^(2))/([sqrt(182*25)+sqrt(1*8225+sqrt(0.01825)+sqrt(0.0001825)))]

Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt(18225)=135, then the value of (sqrt(182.25)+sqrt(1.8225)+sqrt(0.018225)+sqrt(0.0001825)) is (a) 1.49985 (b) 14.9985 (c) 149.985 (d) 1499.85

if x=sqrt((1-t^(2))/(1+t^(2))),y=(sqrt(1+t^(2))-sqrt(1-t^(2)))/(sqrt(1+t^(2))+sqrt(1-t^(2))) then (dy)/(dx)

If x = sqrt((1 - t^2)/(1 + t^2)), y = (sqrt(1 + t^2) - sqrt(1 - t^2))/(sqrt(1 + t^2) + sqrt(1 -t^2)) then (dy)/(dx) =

In a quadrilateral A B C D , vec A C is the bisector of vec A Ba n d vec A D , angle between vec A Ba n d vec A D is 2pi//3 , 15| vec A C|=3| vec A B|=5| vec A D|dot Then the angle between vec B Aa n d vec C D is cos^(-1)(sqrt(14))/(7sqrt(2)) b. cos^(-1)(sqrt(21))/(7sqrt(3)) c. cos^(-1)2/(sqrt(7)) d. cos^(-1)(2sqrt(7))/(14)

In a quadrilateral A B C D , vec A C is the bisector of vec A Ba n d vec A D , angle between vec A Ba n d vec A D is 2pi//3 , 15| vec A C|=3| vec A B|=5| vec A D|dot Then the angle between vec B Aa n d vec C D is cos^(-1)(sqrt(14))/(7sqrt(2)) b. cos^(-1)(sqrt(21))/(7sqrt(3)) c. cos^(-1)2/(sqrt(7)) d. cos^(-1)(2sqrt(7))/(14)

In a quadrilateral A B C D , vec A C is the bisector of vec A Ba n d vec A D , angle between vec A Ba n d vec A D is 2pi//3 , 15| vec A C|=3| vec A B|=5| vec A D|dot Then the angle between vec B Aa n d vec C D is cos^(-1)(sqrt(14))/(7sqrt(2)) b. cos^(-1)(sqrt(21))/(7sqrt(3)) c. cos^(-1)2/(sqrt(7)) d. cos^(-1)(2sqrt(7))/(14)

In a quadrilateral A B C D , vec A C is the bisector of vec A Ba n d vec A D , angle between vec A Ba n d vec A D is 2pi//3 , 15| vec A C|=3| vec A B|=5| vec A D|dot Then the angle between vec B Aa n d vec C D is (a) cos^(-1)(sqrt(14)/(7sqrt(2))) b. cos^(-1)(sqrt(21)/(7sqrt(3))) c. cos^(-1)(2/(sqrt(7))) d. cos^(-1)((2sqrt(7))/(14))

If vec (a),vec (b) and vec (c) are the position vectors of the points A(2,3,-4), B(3,-4,-5) and C(3,2,-3) respectively ,then |vec(a)+vec(b)+vec(c)| is equal to (A) sqrt(113) (B) sqrt(185) (C) sqrt(203) (D) sqrt(209)

If x=int_(0)^(t^(2))e^(sqrt(z)){(2tan sqrt(z)+1-tan^(2)sqrt(z))/(2sqrt(z)sec^(2)sqrt(z))}dz and x=int_(0)^(t^(2))e^(sqrt(z)){(1-tan^(2)sqrt(z)-2tan sqrt(z))/(2sqrt(z)sec^(2)sqrt(z))}dz : Then the inclination of the tangent to the curve at t=(pi)/(4) is :