Home
Class 12
MATHS
If x=logt and y=t^(2)-1, then what is (d...

If `x=logt and y=t^(2)-1`, then what is `(d^(2)y)/(dx^(2))` at t = 1 equal to?

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=cos(2t)and y=sin^(2)t , then what is (d^(2)y)/(dx^(2)) equal to?

if x=log_(e)t,t>0 and y+1=t^(2) then (d^(2)y)/(dx^(2))

If x=t^(2),y=t^(3) what is (d^(2)y)/(dx^(2)) equal to ?

If x=t^(2) and y=t^(3)+1 , then (d^(2)y)/(dx^(2)) is

If x=t^(2) and y=t^(3)+1 , then (d^(2)y)/(dx^(2)) is

If : x=logt" and "y=(1)/(t) then :

If x = t^(2) and y = t^(3) , then (d^(2)y)/(dx^(2)) is equal to

If x = t^(2) and y = t^(3) , then (d^(2)y)/(dx^(2)) is equal to

If x= t^(2) and y= t^(3) , then (d^(2)y)/(dx^(2)) is equal to