Home
Class 12
MATHS
A tank contains 100 litres of fresh wate...

A tank contains 100 litres of fresh water. A solution containing 1 gm/litre of soluble lawn fertilizeruns into the tank the of 1 lit/min and the mixture pumped out of the tank at the rate of at rate of f 3 litres/min. Find the time when the amount of fertilizer in the tank is maximum.

Promotional Banner

Similar Questions

Explore conceptually related problems

A 50 L tank initailly contains 10 L of fresh water, At t=0, a brine solution containing 1 lb of salt per gallon is poured into the tank at the rate of 4 L/min, while the well-stirred mixture leaves the tank at the rate of 2 L/min. Then the amount of time required for overflow to occur in

A 50 L tank initailly contains 10 L of fresh water, At t=0, a brine solution containing 1 lb of salt per gallon is poured into the tank at the rate of 4 L/min, while the well-stirred mixture leaves the tank at the rate of 2 L/min. Then the amount of time required for overflow to occur in

A tank consists of 50 litres of fresh water. Two litres of brine each litre containing 5 gms of dissolved salt are run into tank per minute, the mixture is kept uniform by stirring, and runs out at the rate of one litre per minute. If ‘m’ grams of salt are present in the tank after t minute, express ‘m’ in terms of t and find the amount of salt present after 10 minutes

Consider a tank which initially holds V_(0) liter of brine that contains a lb of salt. Another brine solution, containing b lb of salt per liter is poured into the tank at the rate of eL//"min" . The problem is to find the amount of salt in the tank at any time t. Let Q denote the amount of salt in the tank at any time. The time rate of change of Q, (dQ)/(dt) , equals the rate at which salt enters the tank at the rate at which salt leaves the tank. Salt enters the tank at the rate of be lb/min. To determine the rate at which salt leaves the tank, we first calculate the volume of brine in the tank at any time t, which is the initial volume V_(0) plus the volume of brine added et minus the volume of brine removed ft. Thus, the volume of brine at any time is V_(0)+et-ft The concentration of salt in the tank at any time is Q//(V_(0)+et-ft) , from which it follows that salt leaves the tank at the rate of f(Q/(V_(0)+et-ft)) lb/min. Thus, (dQ)/(dt)=be-f(Q/(V_(0)+et-ft))Q=be A tank initially holds 100 L of a brine solution containing 20 lb of salt. At t=0, fresh water is poured into the tank at the rate of 5 L/min, while the well-stirred mixture leaves the tank at the same rate. Then the amount of salt in the tank after 20 min.

A tank initially contains 50 litres of pure water. Starting at time t = 0 a brine containing with 2 grams of dissolved salt per litre flows into the tank at the rate of 3 litres per minutes. The mixture is kept uniform by stirring and the well - stirred mixture simultaneously flows out of the tank at the same rate. Find the amount of salt present in the tank at any time t gt 0 .

A tank contains 1000 litres of water and it flows out at the rate of 5 litres per second. How much water is there in the tank after each second? Write their numbers as a sequence.