Home
Class 14
MATHS
[" 48."[(1+cos(pi/8)+i sin(pi/8))/(1+cos...

[" 48."[(1+cos(pi/8)+i sin(pi/8))/(1+cos(pi/8)-i sin(pi/8))]^(8)" is equal to "],[[" (a) "-1," (b) "0],[" (c) "1," (d) "2]]

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of [(1+cos(pi/8)+isin(pi/8))/(1+cos(pi/8)-isin(pi/8))]^8 is

((1+cos. pi/8+isin. pi/8)/(1+cos. pi/8- isin. pi/8))^(8)=

((sin (pi/8)+i cos (pi/8))/(sin (pi/8)-i cos (pi/8)))^(8)=

((1+cos""(pi)/(8)-isin""(pi)/(8))/(1+cos""(pi)/(8)+isin""(pi)/(8)))^(8)

((1+"cos"(pi)/(8)+"isin"(pi)/(8))/(1+"cos"(pi)/(8)-"isin"(pi)/(8)))^(8)=

[(1+sin(pi//8)+icos(pi//8))/(1+sin(pi//8)-icospi//8)]^(-8//3)

The expression [(1+sin(pi/8)+icos(pi/8))/(1+sin(pi/8)-icos(pi/8))]^8 is equal is

((1 + "cos"(pi)/(8) -i "sin"(pi)/(8))/(1 + "cos"(pi)/(8) + i "sin" (pi)/(8)))^(12)=

(1+cos.(pi)/(8))(1+cos.(3pi)/(8))(1+cos.(5pi)/(8))(1+cos.(7pi)/(8)) is equal to