Home
Class 12
MATHS
A root of the equation17x^2 + 17x tan [2...

A root of the equation`17x^2 + 17x tan [2 tan^-1(1/5) - pi/4] - 10 = 0` is (i) `10/17` (ii)`-1` (iii)`-7/17` (iv)`1`

Promotional Banner

Similar Questions

Explore conceptually related problems

A root of the equation 17x^(2)+17x tan[2tan^(-1)((1)/(5))-(pi)/(4)]-10=0 is (i) (10)/(17)(ii)-1(iii)-(7)/(17) (iv) 1

Prove statement tan ( 2 "tan"^(-1)1/5-pi/4) + 7/17 =0

tan(2tan^(-1)(1)/(5)-(pi)/(4))+(7)/(17)=0

Find the roots of the equation 4x^(2)-4x+17=3x^(2)-10x-17

Prove that : tan(2tan^(- 1)\ 1/5-pi/4)+7/17=0

Prove that 2 tan^-1(1/2) + tan^-1 (1/7) = tan^-1 (31/17) .

Prove that : 2tan^-1 (1/5) + tan^-1 (7/17) = pi/4

Show that 2sin^-1(3/5)-tan^-1(17/31) = pi/4