Home
Class 12
MATHS
Find the value of c so that y= mx +c may...

Find the value of c so that y= mx +c may be a tangentto the circle `x^2+y^2=4y` for all values of m.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = 2sqrt2x+c is a tangent to the circle x^(2) +y^(2) = 16 , find the value of c.

Find the value of 'c' so that 2x - y + c=0 may touch the ellipse x ^(2) + y ^(2) = 2.

Find the value of m for which y = mx + 6 is a tangent to the hyperbola x^2 /100 - y^2 /49 = 1

If y=mx+c is a tangent to the circle x^2+y^2=1 , show that c=+-sqrt(1+m^2)

Find the value of lambda so that the line 3x-4y= lambda may touch the circle x^2+y^2-4x-8y-5=0

Find the value of lambda so that the line 3x-4y= lambda may touch the circle x^2+y^2-4x-8y-5=0

If the line y = mx + 1 is tangent to the parabola y^(2) = 4x then find the value of m.

The straight line y=mx+1 is a tangent to the parabola y^2=4x , the find the value of m.