Home
Class 11
MATHS
The polar form of (i^(25))^3 is a. cos(p...

The polar form of `(i^(25))^3` is a. `cos(pi/2)+isin(pi/2)` b. `cospi+i\ sinpi` c. `cospi-isinpi` d. `cos(pi/2)-\ i sin(pi/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The polar form of (i^(255))^(3) is (cos pi)/(2)+i(sin pi)/(2)bcos pi+is in pi c*cos pi-i sin pi d(cos pi)/(2)-is in(pi)/(2)

The polar form of the complex number (i^(25))^3 is (a) cos(pi/2)+isin(pi/2) (b) cospi+isinpi (c) cospi-isinpi (d) cos((3pi)/2)+isin((3pi)/2)

-2(cos(pi/3)+isin(pi/3))=?

The value of (cos(pi/10)+isin(pi/10))(cos((2pi)/10)+isin((2pi)/10))(cos((3pi)/10)+isin((3pi)/10))(cos((4pi)/10)+isin((4pi)/10)) is

The argument of (1-i)/(1+i) is a. -pi/2 b. pi/2 c. (3pi)/2 d. (5pi)/2

Prove that: cospi/10-sinpi/10=sqrt(2)sin(3pi)/(20)

The argument of (1-i)/(1+i) is (pi)/(2) b.(pi)/(2) c.(3 pi)/(2)d .(5 pi)/(2)

((sin (pi/8)+i cos (pi/8))/(sin (pi/8)-i cos (pi/8)))^(8)=

Find the rectangular form of the complex numbers. (cos" " (pi)/(6) + i sin" " (pi)/(6)) (cos" " (pi)/(12) + i sin" " (pi)/(12))

cospi/5+cos(2pi)/5+cos(6pi)/5+cos(7pi)/5=0