Home
Class 11
MATHS
[" The Minimum value of "|z(4)-z(2)|" ar...

[" The Minimum value of "|z_(4)-z_(2)|" are "z,quad $z_(2)" vary "],[" crent the curver "|sqrt(3)(1-z)+2f|=2sqrt(7)" s "],[|sqrt(3)(-1-z)-2i|=|sqrt(3)(9-z)+18i|" Respecanty is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_(1)=iz_(2) and z_(1)-z_(3)=i(z_(3)-z_(2)), then prove that |z_(3)|=sqrt(2)|z_(1)|

If |z_(1)|=|z_(2)|=|z_(3)|=1 are twu complex numbers such that |z_(1)|=|z_(2)|=sqrt(2) and |z_(1)+z_(2)|=sqrt(3), then |z_(1)-z_(2)| equation

If z(2-2sqrt(3i))^2=i(sqrt(3)+i)^4, then a r g(z)=

The value of (1+Iz+z^(5)+z^(8))^(9) when z=(sqrt(3)+i)/(2) is

Maximum value of |z+1+i|, where z in S is (a) sqrt(2) (b) 2 (c) 2sqrt(2) (d) 3sqrt(2)

The equation z((2+1+i sqrt(3))/(z+1+i sqrt(3)))+bar(z)(z+1+i sqrt(3))=0 represents a circle with