Home
Class 10
MATHS
" If "f(x)={[(sqrt(1+kx)-sqrt(1-kx))/(x)...

" If "f(x)={[(sqrt(1+kx)-sqrt(1-kx))/(x)," for "-1<=x<0],[2x^(2)+3x-2," for "0<=x<=1]" is continuous at "x=0" then "k=

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the values of k so that the function f is continuous at the indicated point f(x) = {((sqrt(1+ kx)-sqrt(1-kx))/(x)",","if " -1 le x lt 0),((2x+1)/(x-1)",","if " 0 le x lt 1):} at x= 0

If f(x) = {((sqrt(1+kx)-sqrt(1-kx))/(x), "if" -1 le x lt 0),((2x+k)/(x-1), "if" 0 le x le1):} is continuous at x = 0, then the value of k is

If f(x) = {((sqrt(1+kx)-sqrt(1-kx))/(x), "if" -1 le x lt 0),((2x+k)/(x-1), "if" 0 le x le1):} is continuous at x = 0, then the value of k is

If f(x)={{:((sqrt(1+kx)-sqrt1-kx)/(x),"for" -1 le x0),(2x^(2)+3x-2,"for" 0 le x le 1):} is continuous at x = 0 then find k.

Find the value of k for which f(x)={{:((sqrt(1+kx)-sqrt(1-kx))/(x)", if "-1lexlt0),(" "(2x+1)/(x-1)", if "0lexlt1):} is continuous at x = 0

If f(x)= {{:((sqrt(1+kx)-sqrt(1-kx))/x", if "-1/2 lex lt 0),(2x^(2)+3x-2", if "0 le x le 1):} is continuous at x = 0 , then k = ….