Home
Class 12
MATHS
[" If "A=[[e^(t),e^(-c)cos t,e^(-t)sin t...

[" If "A=[[e^(t),e^(-c)cos t,e^(-t)sin t],[f,cos t-e^(-t)sin t,-e^(-t)sin t+e^(-t)cos t],[2e^(-t)sin t,-2e^(-t)cos t]],[" Then "A," is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

A = [{:(e^(t), e^(-t)"cos"t, e^(-t)"sin"t),(e^(t)-e^(-t), "cos"t-e^(-t)"sin"t, -e^(-t)"sin"t + e^(-t)"cos"t),(e^(t), 2e^(-t)"sin"t, -2e^(-t)"cos"t):}]"then A is"

Matrix [[e^t,e^(-t)(sint-2cost),e^(-t)(-2sint-cost)],[e^t,-e^(-t)(2sint+cost),e^(-t)(sint-2cost)],[e^t,e^(-t)cost,e^(-t)sint]] is invertible. (1) only id t=pi/2 (2) only y=pi (3) t in R (4) t !in R

x = e^(-t) (a cos t + b sin t )

x=e^t (sin t + cos t ),y=e^t(sin t -cos t)

int e^(t)(cost-sin t)dt

Find dy/dx x=e^t (sin t + cos t ),y=e^t(sin t -cos t)

If x=a(cos t+t sin t) and y=a(sin t-t cos t)

7. x=a(cos t+t sin t),y=a(sin t-t cos t) find dy/dx

Find dy/dx when x = e^t (sin t + cos t), y = e^t (sin t - cos t)