Home
Class 12
MATHS
[" 36.Three vertors "a,vec b" and "vec c...

[" 36.Three vertors "a,vec b" and "vec c" satisfy the condition "],[vec a+vec b+vec c=vec 0" ,evaluate "mu=vec a*vec b+vec b*vec c+vec c*vec a," if "|vec a|=1],[|vec b|=4" and "|vec d=2]

Promotional Banner

Similar Questions

Explore conceptually related problems

Three vectors veca, vec b and vec c satisfy the condition vec a + vec b + vec c = 0 .Evaluate the quantity. mu = vec a.vec b + vec b.vec c+ veca.vec c if |vec a| = 1, |vec b| = 4, |vec c| = 2

Three vectors vec a , vec b , vec c satisfy the condition vec a+ vec b+ vec c= vec0 . Evaluate the quantity mu= vec adot vec b+ vec bdot vec c+ vec cdot vec a , if | vec a|=1, | vec b|=4 a n d | vec c|=2.

Three vectors vec a, vec b and vec c satisfy the condition vec a + vec b + vec b + vec c = vec 0 .Evaluate the quantity mu = vec a * vec b + vec b * vec c + vec c * vec a , if | vec a | = 1 | vec b | = 4 and | vec c | = 2

Three vectors vec a ,\ vec b ,\ vec c satisfy the condition vec a+ vec b+ vec c= vec0 . Evaluate the quantity mu= vec adot vec b+ vec bdot vec c+ vec cdot vec a ,\ if\ | vec a|=1,\ | vec b|=4\ a n d\ | vec c|=2.

Three vectors vec(a),vec(b) and vec( c ) satisfy the condition vec(a)+vec(b)+vec( c )=vec(0) . Evaluate the quantity mu=vec(a).vec(b)+vec(b).vec( c )+vec( c ).vec(a) , if |vec(a)|=1,|vec(b)|=4 and |vec( c )|=2 .

Three vectors overline(a),overline(b) and overline(c) satisfy the condition vec(a)+vec(b)+vec(c)=vec(0) evaluate mu=vec(a).vec(b)+vec(b).vec(c)+vec(c).vec(a) if |vec(a)|=1,|vec(b)|=4 and |vec(c)|=2

If vec a , vec b , vec c are unit vectors and vec a + vec b + vec c = 0 then the evaluate vec a. vec b + vec b.vec c + vec c.vec a .

[vec a+vec b,vec b+vec c,vec c+vec a]=2[vec a,vec b,vec c]

If vec a,vec b, and vec c are unit vectors such that vec a+vec b+vec c=0, then find the value of vec a*vec b+vec b*vec c+vec c*vec a

If vec a, vec b, vec c are unit vectors satisfying the condition veca+ vec b+ vec c= 0 then show that vec a. vec b+ vec b.vec c+ vec c. vec a= -3//2 .