Home
Class 12
MATHS
sin[2cos^(-1){cot(2tan^(-1)x)}]=0...

sin[2cos^(-1){cot(2tan^(-1)x)}]=0

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the equation sin[2cos^-1{cot(2tan^-1x)}] = 0 are

Solve: sin[2\ cos^(-1){cot(2\ tan^(-1)x)}]=0

Solve: sin[2\ cos^(-1){cot(2\ tan^(-1)x)}]=0

Solve: sin[2\ cos^(-1){cot(2\ tan^(-1)x)}]=0

sin[cot^(-1){cos(tan^(-1)x)}]=

Prove that: "sin"[cot^(-1){"cos"(tan^(-1)x)}]=sqrt((x^2+1)/(x^2+2)) cos [tan^(-1) (cot^(-1)x)}]=sqrt((x^2+1)/(x^2+2))

Prove that: "sin"[cot^(-1){"cos"(tan^(-1)x)}]=sqrt((x^2+1)/(x^2+2))

Prove that: "sin"[cot^(-1){"cos"(tan^(-1)x)}]=sqrt((x^2+1)/(x^2+2)) cos"[tan^(-1){"sin"(cot^(-1)x)}]=sqrt((x^2+1)/(x^2+2))

Prove that: sin[cot^(-1){cos(tan^(-1)x)}]=sqrt((x^(2)+1)/(x^(2)+2))cos[tan^(^^)(-1){sin(cot^(-1)x)}]=sqrt((x^(2)+1)/(x^(2)+2))

Solve sin [2 cos^(-1) { cot (2 tan^(-1) x)}]= 0