Home
Class 12
MATHS
(666.....n digits)^2+(888.....n digits)=...

`(666.....n digits)^2+(888.....n digits)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

STATEMENT -1: (666...n digit)^2+(888... ndigit)=(444....2ndigits) STATEMENT- 2 (111....1) 12 times is a prime number. (A) STATEMENT-1 is True, STATEMENT-2 is True ; STATEMENT-2 is a correct explanation for (B) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is NOT a correct explanation for (C) STATEMENT-1 is True, STATEMENT-2 s False .n digits+ (888. digits) (44 .2n digits) 2 is a prime number 12 times n H.P., wherea STATEMENT-1 STATEMENT-1 STATEMENT-1 is False, STATEMENT-2 is True (D)

(666 ..... ndigits) ^ (2) + (888 ..... ndigits) =

Prove that (666 …. "to n digits")^(2) + (888 …. To n digits ) = (444 … to 2n digits ).

Show that (666 ...n "times")^(2) +(888.... N times) =(444.... 2n times).

(666...n times)^2 +(888..n times) is equal to ___

Prove that the number (444.........4)/(ndigit),(888..........89)/((n-1)digit) is a perfect square of the number (666.......6)/((n-1)digit)7

Prove that (666 ....6)^2+(888 .....8)=4444 ...... 4.

The square root of a perfect square containing n digits has dots...... digits.

If a_na_(n-1)a-(n-2),.,a_3,a_2,a-1 be a digit having a_1,a_2,a_3,…..a_n unit, tens hundreds places respectively. Then a_n a_(n-1) a_(n-2)….a_3a_2a_1= a_nxx1+a_2xx10^2+a_3xx10^3+…..+a_n10^(n-1) On the basis of above information answer the following question If alpha= 888.....8 (a nunmber of n digits), beta=666.........6 (a number of n digits) and gamma=444.......4 (a number 2n digits) then gamma-alpha= (A) beta (B) beta^2 (C) - beta (D) -beta^2