Home
Class 12
MATHS
If x = a cos^2theta* sintheta and y=asi...

If `x = a cos^2theta* sintheta` and `y=asin^2theta*costheta` then `(x^2+y^2)^3 /(x^2*y^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = a cos ^ (2) theta sin theta and y = a sin ^ (2) theta cos theta then ((x ^ (2) + y ^ (2)) ^ (3)) / (x ^ (2 ) and ^ (2)) =

If x= a cos^(2) theta sin theta and y= a sin^(2) theta cos theta , " then " ((x^(2)+y^(2))^(3))/(x^(2)y^(2))=

If x = a cos theta + b sin theta and y =asin theta-b cos theta , then prove that y^2 (d^2y)/(dx^2)-x(dy)/(dx)+y=0

If x = a cos theta + b sin theta and y =asin theta-b cos theta , then prove that y^2 (d^2y)/(dx^2)-x(dy)/(dx)+y=0

If x = a cos theta + b sin theta and y =asin theta-b cos theta , then prove that y^2 (d^2y)/(dx^2)-x(dy)/(dx)+y=0

If x = acos^(3)theta sin^(2)theta , y = asin^(3)theta cos^(2)theta and (x^(2) + y^(2))^(p)/(xy)^(q)(p,q in N) is independent of theta , then :

If 2y cos theta= xsin theta and 2x sec theta-y cosec theta=3 then x^2/4+y^2=