Home
Class 12
MATHS
f(x)=sin^2x+cose c^2x=>...

`f(x)=sin^2x+cose c^2x=>`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=|[1+sin ^2 x, cos ^2 x , 4 sin 2 x],[ sin ^2 x ,1+cos ^2 x , 4 sin 2 x],[ sin ^2 x , cos ^2 x , 1+4 sin 2 x]| , the maximum value of f(x) is

If f(x)=[[1+sin^2x,cos^2x,4sin2x],[sin^2x,1+cos^2x,4sin2x],[sin^2x,cos^2x,1+4sin2x]] what is the maximum value of f(x).

If f(x)=2x+[x]+sin x cos x, Then f is:

Range of f(x) = (sin^2x + sin x -1)/(sin^2x - sin x + 2)

If f'(x)=sin x+sin4x cos x then f'(2x^(2)+(pi)/(2))=

The period of the function f(x)=c^((sin^2x) +sin^2 (x+pi/3)+cosxcos(x+pi/3)) is (where c is constant)

If f(x) = |(1+sin^(2)x,cos^(2)x,4 sin 2x),(sin^(2)x,1+cos^(2)x,4 sin 2x),(sin^(2)x,cos^(2)x,1+4 sin 2x)| What is the maximum value of f(x)?