Home
Class 12
MATHS
[" F "xvec b=vec c timesvec b" and "vec ...

[" F "xvec b=vec c timesvec b" and "vec r,vec a=0," then the value of "vec b" is "],[[vec " 34."*vec b" and "vec c" are unit vectors satisfing "|vec a-vec b|^(2)+|vec b-vec c|^(2)+|vec c-vec a|^(2)=9," then "|2vec a+5vec b+5vec c|" is "],[34." ."vec b" and "vec c" are unit vectors atisfing "|vec a-vec b|^(2)+|vec b|^(2)+|vec c^(3)*" Let the components of a vector "],[35.," Suppose that "vec p,vec q" and "vec r" are three non-coplanar vectors in "R^(3)" .Let the components of a "+vec r).]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a,vec b and vec c are unit vectors satisfying |vec a-vec b|^(2)+|vec b-vec c|^(2)+|vec c-vec a|^(2)=9 then |2vec a+5vec b+5vec c| is.

If vec a,vec b,vec c are unit vector,prove that |vec a-vec b|^(2)+|vec b-vec c|^(2)+|vec c-vec a|^(2)<=9

If vec a , vec b , vec c are unit vector, prove that | vec a- vec b|^2+| vec b- vec c|^2+| vec c- vec a|^2lt=9.

Let vec a, vec b, vec c are unit vector where | vec a-vec b | ^ (2) + | vec b-vec c | ^ (2) + | vec c + vec a | ^ (2) = 3 then | vec a + 2vec b + 3vec c | ^ (2) is equal to

If vec(a), vec(b) " and " vec(c) are unit vectors satisfying abs(vec(a)-vec(b))^(2)+abs(vec(b)-vec(c))^(2)+abs(vec(c)-vec(a))^(2)=9, " then " abs(2vec(a)+5vec(b)+5vec(c)) is -

Let vec a, vec b, vec c are three vectors such that vec a * vec a = vec b * vec b = vec c * vec c and | vec a-vec b | ^ (2) + | vec b-vec c | ^ (2) + | vec c-vec a | ^ (2) = 27 then

Let vec a, vec b, vec b, vec b are three vectors such that vec a * vec a = vec b * vec b = vec c * vec c = 3 and | vec a-vec b | ^ (2) + | vec b-vec c | ^ (2) + | vec c-vec a | ^ (2) = 27 then

Let vec a, vec b and vec c are unit coplanar vectors then the scalar triple product [2 vec a - vec b 2 vec b - vec c 2 vec c - vec a]

Let vec a and vec b be two unit vectors such that |vec a+vec b|=sqrt(3) if vec c=vec a+2vec b+3(vec aXvec b) then 2|vec c| is equal to

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2