Home
Class 12
MATHS
If f(x)={sinx ,x!=npi,n in I2,ot h e r ...

If `f(x)={sinx ,x!=npi,n in I2,ot h e r w i s e` `g(x)={x^2+1,x!=0,4,x=0 5,x=2` then `("lim")_(xvec0)g{f(x)}i s=`

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)={x ,xlt=0 1,x=0,then find ("lim")_(xvec0) f(x) if exists x^2,x >0

If f(x)={(sinx, x != npi " and " n in I_2), (2, " x=npi):} and g(x)={(x^2+1, x != 0),(4,x=0), (5, x=2):} then lim_(x->0) g{f(x)} is

If f(x)={(sinx, x != npi " and " n in I_2), (2, " x=npi):} and g(x)={(x^2+1, x != 0),(4,x=0), (5, x=2):} then lim_(x->0) g{f(x)} is

If f(x)={(sinx, x != npi " and " n in I_2), (2, " x=npi):} and g(x)={(x^2+1, x != 0),(4,x=0), (5, x=2):} then lim_(x->0) g{f(x)} is

If f(x)={(sinx, x != npi " and " n in I_2), (2, " x=npi):} and g(x)={(x^2+1, x != 0),(4,x=0), (5, x=2):} then lim_(x->0) g{f(x)} is

If f(x)={(sinx, x != npi " and " n in Z), (2, " x=npi):} and g(x)={(x^2+1, x != 0),(4,x=0), (5, x=2):} then lim_(x->0) g{f(x)} is

f(x)={x ,xlt=0 1,x=0,t h e nfin d("lim")_(xvec0)f(x)x^2,x >0ife xi s t s

Evaluate: ("lim")_(xvec0)(e^x^2-cosx)/(x^2)

If f(x)={x/(s in x),x >0 2-x ,xlt=0 and g(x)={x+3,x<1x^2-2x-2,1lt=x<2x-5,xgeq2 Then the value of (lim)_(xvec0)g(f(x)) a. is -2 b. is -3 c. is 1 d. does not exist

If f(x)={x/(s in x),x >0 2-x ,xlt=0 and g(x)={x+3,x<1x^2-2x-2,1lt=x<2x-5,xgeq2 Then the value of (lim)_(xvec0)g(f(x)) a. is -2 b. is -3 c. is 1 d. does not exist