Home
Class 11
MATHS
if f:[1,oo)->[2,oo) is given by f(x)=x+1...

if `f:[1,oo)->[2,oo)` is given by `f(x)=x+1/x` then `f^-1(x)` equals to : a) `(x+sqrt(x^2-4))/2` b) `x/(1+x^2)` c) `(x-sqrt(x^2-4))/2` d) `1+sqrt(x^2-4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If F :[1,oo)->[2,oo) is given by f(x)=x+1/x ,t h e n \ f^(-1)(x) equals \ \ (a) (x+sqrt(x^2-4))/2 (b) x/(1+x^2) (c) (x-sqrt(x^2-4))/2 (d) 1+sqrt(x^2-4)

If f:[1,oo)to[2,oo) is given by f(x)=x+(1)/(x) , then f^(-1)(x) equals :

If f: [1,oo) rarr [2, oo) is given by f(x) = x+1/x , then f^(-1) (x) equals a) ((x+sqrt(x^2-4)))/(2) b) x/(1+x^2) c) ((x-sqrt(x^2-4)))/(2) d) 1+sqrt(x^2-4)

If F :[1,oo)vec[2,oo) is given by f(x)=x+1/x ,t h e nf^(-1)(x) equals. (a) (x+sqrt(x^2-4))/2 (b) x/(1+x^2) (c) (x-sqrt(x^2-4))/2 (d) 1+sqrt(x^2-4)

If F :[1,oo)vec[2,oo) is given by f(x)=x+1/x ,t h e nf^(-1)(x) equals. (x+sqrt(x^2-4))/2 (b) x/(1+x^2) (c) (x-sqrt(x^2-4))/2 (d) 1+sqrt(x^2-4)

If F :[1,oo)vec[2,oo) is given by f(x)=x+1/x ,t h e nf^(-1)(x) equals. (x+sqrt(x^2-4))/2 (b) x/(1+x^2) (c) (x-sqrt(x^2-4))/2 1+sqrt(x^2-4)

If F:[1,x)rarr[2,x] is given by f(x)=x+(1)/(x), then f^(-1)(x) equals.(a) (x+sqrt(x^(2)-4))/(2)(b)(x)/(1+x^(2))(c)(x-sqrt(x^(2)-4))/(2) (d) 1+sqrt(x^(2)-4)

If F:[1,oo)vec 2,oo is given by f(x)=x+(1)/(x), then f^(-1)(x) equals.(x+sqrt(x^(2)-4))/(2)(b)(x)/(1+x^(2))(c)(x-sqrt(x^(2)-4))/(2)(d)1+sqrt(x^(2)-4)