Home
Class 12
MATHS
[v=bar(i)+3bar(k)*" If "bar(U)" is a uni...

[v=bar(i)+3bar(k)*" If "bar(U)" is a unit vertor,then the maximum value of the scalar triple product "],[(B)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let v = 2i + j - k and w = I + 3k. If u is unit vector. Then the maximum value of the scalar triple product [u v w] is

If bar(a)=6bar(i)+sin^(2)thetabar(j)+2bar(k)&bar(b)=cosec^(2)thetabar(i)+6bar(j)-bar(k) , then the minimum value of the scalar product of bar(a)&bar(b) is

Let bar(u)=bar(i)+bar(j),bar(v)=bar(i)-bar(j),bar(w)=bar(i)+2bar(j)+3bar(k) .If bar(n) is a unit vector such that bar(u).bar(n)=0,bar(v).bar(n)=0 then |bar(w).bar(n)|=

Let bar(a) be a unit vector bar(b)=2bar(i)+bar(j)-bar(k) and bar(c)=bar(i)+3bar(k) then maximum value of [bar(a)bar(b)bar(c)] is

If bar(a)=2bar(i)-3bar(j)+5bar(k),bar(b)=-bar(i)+4bar(j)+2bar(k) then find bar(a)timesbar(b) and unit vector perpendicular to both bar(a) and bar(b) .

Let bar(a) be a unit vector bar(b)=2bar(i)+bar(j)-bar(k) and bar(c)=bar(i)+3bar(k) then maximum value of [[bar(a),bar(b),bar(c)]] is

The orthogonal projection of bar(a)=2bar(i)+3bar(j)+3bar(k) on bar(b)=bar(i)-2bar(j)+bar(k) (where bar(i)*bar(j)*bar(k) are unit vectors along there mutually perpendicular directions is

If bar(a)= 2bar(i) - 3bar(j) + 5bar(k), bar(b)= - bar(i) + 4bar(j)+ 2bar(k) then find (bar(a) + bar(b)) xx (bar(a) - bar(b)) and unit vector perpendicular to both bar(a) + bar(b) " & " bar(a)- bar(b) .