Home
Class 12
MATHS
5. The center-point of the circle that i...

5. The center-point of the circle that is x + ji + 4x-6y + 9 = 0 and x2 + -4x + 6y + 4 = 0 perpendicularly Intersects is

Promotional Banner

Similar Questions

Explore conceptually related problems

The locus of the centre of circle which cuts the circles x^2 + y^2 + 4x - 6y + 9 =0 and x^2 + y^2 - 4x + 6y + 4 =0 orthogonally is

Center of the circle x^(2) + y^(2) - 4x + 6y - 12 = 0 is -

Find the equation of the circle which passes through the points of intersection of circles x^2 + y^2 - 2x - 6y + 6 = 0 and x^2 + y^2 + 2x – 6y + 6 = 0 and intersects the circle x^2 + y^2 + 4x + 6y +4=0 orthogonally.

The locus of the centre of the circle which cuts the circles x^(2) + y^(2) + 4x - 6y + 9 = 0 " and " x^(2) + y^(2) - 4x + 6y + 4 = 0 orthogonally is

The locus of the centers of the circles which cut the circles x^(2) + y^(2) + 4x – 6y + 9 = 0 and x^(2) + y^(2) – 5x + 4y – 2 = 0 orthogonally is

The locus of the centre of the circle which cuts the circles x^(2) + y^(2) + 4x - 6y + 9 = 0 " and " x^(2) + y^(2) - 5x + 4y + 2 = 0 orthogonally is

The point (2, -1) ________ the circle x^(2) + y^(2) - 4x + 6y + 8 = 0 .