Home
Class 14
MATHS
[" BEGINNER'S BOX-4"],[" TRIPPLEPRODUCTO...

[" BEGINNER'S BOX-4"],[" TRIPPLEPRODUCTOF VECTORS "],[" If "bar(a),b" ,bar(c are three non coplanar mutually perpendicular unit vectors then find ) [ bar( ) a ,bar( ) b ,bar( ) c ] ."],[" If i be a vector perpendicular to "ddot a+bar(b)+bar(c)," where "la(1)/(b)cl=z" and "bar(r)=ell(bar(b)timesdot c)+m(bar(c)timesbar(a))+n(bar(a)timesbar(b))]

Promotional Banner

Similar Questions

Explore conceptually related problems

If bar(a),bar(b),bar(c ) are mutually perpendicular unit vectors, then find [bar(a)bar(b)bar(c )]^(2) .

If bar(a),bar(b) and bar(c) are mutually perpendicular vectors then [bar(a)bar(b)bar(c)]=

If [bar(a) bar(b) bar(c)]=2 then [2(bar(b)timesbar(c))(bar(-c)timesbar(a))(bar(b)timesbar(a))] is equal to

If [bar(a) bar(b) bar(c)]=2 ,then [2(bar(b)timesbar(c))(-bar(c)timesbar(a))(bar(b)timesbar(a))] is equal to

If bar(a)+bar(b)+bar(c)=bar(0) then bar(a)timesbar(b)=

If bar(a),bar(b),bar (c ) are pair wise mutually perpendicular vectors of equal magnitude , then the angle wisv bar(a)+bar(b)+bar (c ) is

If bar(a), bar(b), bar(c) are non-coplanar vectors and x, y, z are scalars such that bar(a)=x(bar(b)timesbar(c))+y(bar(c)timesbar(a))+z(bar(a)timesbar(b)) then x =

IF bar a , bar b , bar c are mutually perpendicular vectors having magnitudes 1,2,3 respectively then [ bar a + bar b + bar c " " bar b - bar a " " bar c ]=?

If bar(a),bar(b) are vectors perpendicular to each other and |bar(a)|=2,|bar(b)|=3, bar(c)timesbar(a)=b, then the least value of 2|bar(c)-bar(a)|" is

If bar(a),bar(b),bar( c ) and bar(d) are coplanar vectors then (bar(a)xx bar(b))xx(bar( c )xx bar(d)) = …………..