Home
Class 12
MATHS
" If "A+B+C=pi;" prove that "tan^(2)(A)/...

" If "A+B+C=pi;" prove that "tan^(2)(A)/(2)+tan^(2)(B)/(2)+tan^(2)(C)/(2)>=1

Promotional Banner

Similar Questions

Explore conceptually related problems

If A + B + C = pi , prove that tan^2(A/2)+tan^2(B/2)+tan^2(C/2)ge1

If A+B+C=pi, prove that tan^2(A/2)+tan^2(B/2)+tan^2(C/2)geq1.

Prove that (s-a)tan((A)/(2))=(s-b)tan((B)/(2))=(s-c)tan((C)/(2))

Prove that 1-tan(A/2)tan(B/2)=(2c)/(a+b+c) .

If A+B+C=pi, prove that tan^2A/2+tan^2B/2+tan^2C/2geq1.

If A+B+C=pi, prove that tan^2A/2+tan^2B/2+tan^2C/2geq1.

If A+B+C=pi, prove that tan^2A/2+tan^2B/2+tan^2C/2geq1.

IF A+B+C=pi ,then prove that tan (A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1

If A+B+C=pi , prove that : tan( A/2) tan (B/2) + tan (B/2 )tan (C/2)+ tan( C/2) tan (A/2) =1

If A+B+C=pi , prove that : tan( A/2) tan (B/2) + tan (B/2 )tan (C/2)+ tan( C/2) tan (A/2) =1